avatar_48x48
Contact BSI
Derrick Daye
888.706.5489 Email us

Category: Big Data

Big Data

Using Big Data To Shape Brand Experiences

By

TESCO Brand Strategy

What can Big Data do for a brand? It depends on how it’s used.

TESCO, more than any other large-scale, global retail brand, had committed to customer research, analytics, and loyalty as its marketing and operational edge. When it comes to behavioral data and loyalty programs, TESCO was the standard-bearer, the bar-setter, and it set the bar very high. With all of this phenomenal data, why then is Britain’s largest retailer in trouble?

In a recent HBR op-ed, Michael Schrage, a research fellow at MIT Sloan School’s Center for Digital Business opines, “Tesco’s decline presents a clear and unambiguous warning that even rich and data-rich loyalty programs and analytics capabilities can’t stave off the competitive advantage of slightly lower prices and a simpler shopping experience…Despite its depth of data and experience, today’s Tesco simply lacks the innovation and insight chops to craft promotions, campaigns, and offers that allow it to even preserve share, let alone grow it.”

Big Data is just more data, hopefully better data. Insights are just more data too. It’s the distinction between insight and actionable insight that transform data into a dynamic component in brand storytelling. What can data do? To answer that, we start with the end in mind: What do we want data to do?

Knowing what role we want data to play will tell us what data we need, where the data will come from, and how long it will take to glean insights from the interactions that we measure.

Gavin Heaton offers this insight into retail disruption:

Read More
Big Data

Brands Need Big Insights Not Big Data

By

Brand Strategy Big Data

For over a decade now, UPS delivery trucks in the USA have avoided making left turns. Analysis of tracking system data found that eliminating left turns – which often left the vehicle idling at an intersection for significant periods of time – would save time and gasoline. This is exactly the sort of insight that allows a company to change things for the better, but it can be really tough to find no matter how much data is available to you. 

The initial UPS analysis was conducted back in 2001 well before the hype about big data, but it does indicate the sort of benefits that might be derived from analyzing the masses of data now available to us in business and marketing. Since 2004, UPS claims the no left turn policy has saved over 10 million gallons of gas and reduced carbon emissions by more than 100,000 metric tons.

Would the tracking data used in the analysis qualify as big data today? That all depends on which definition is used. If all UPS vehicles were included in the analysis – about 90,000 at the time – then it would be big data according to Professor Viktor Mayer-Schönberger. An article in the Financial Times reports that his favored definition of a big data set is one where “N = All,” in other words, you do not need to worry about sample bias because everyone or everything is included in your data set.

That, of course, is still one of the biggest issues facing the use of big data today. Rarely does “N=All.” In his article, “Big data: are we making a big mistake? Tim Harford seeks to highlight why big data might lead us astray, citing the examples of sample bias and also hidden causation as reasons why big data might cause us to make big mistakes.

Read More
Big Data

Customer Behavior, Big Data And Little Insights

By

Every time I step out of New Zealand and into a big economic region, the two things I notice are the crowds and the scale. Looking out over row after row of A380s parked on tarmacs, wrestling for room on a crowded street in a busy Asian city or seeing the world go about its business in a towering CBD, the immensity of humanity and the pace at which life operates is immediately apparent.

Recently I was struck by something else. Quite literally, at the other end of the scale. I was on a train traveling back into Kuala Lumpar from a meeting when I noticed that everybody around me had on headphones – everybody – and to a man, woman and teenager, they were wearing a look that said “Disconnected from the world”. (Of course that doesn’t just happen in Malaysia. I just happened to particularly notice it on this journey.)

And I remember thinking at the time – I wonder why that is? Were they looking to keep the rest of the world away, or were they in fact taking advantage of the opportunity to lock in some time to themselves? Perhaps both. Perhaps neither. It’s strange isn’t it how we are now at a point where technology allows us to be private in public and then public in private within minutes of each other? And the fact that we might want to do both, and feel quite at home doing so, defies simplistic logic.

Which is exactly the point. We’re not logical – and that leads me, in a lateral way, to Walker Smith’s recent Branding Strategy Insider post about Big Data. The numbers we derive from big data don’t lie, but our readings as brand marketers of what that data really means can be seriously misleading. As Walker says, the presumption is that more data means better marketing. Where we go wrong is what we do with the information we receive. “Humans have a hardwired, built-in propensity for seeing patterns … We are still inclined to see patterns or connections where none exist, a problem that is particularly perilous when we are working with large datasets to make important policy or business decisions.”

Absolutely. Big data delivers big patterns, but of course the patterns that make sense to each of us as individual consumers are much more mercurial. Big data matters for the big picture, but it’s a dangerous predicate on which to encourage individual action.

Read More
Big Data

A Brand Marketers Guide To Big Data

By

One of the big questions on the table for brand marketers is what to do with Big Data. The presumption is that more data means better marketing, but finding the path from more to better is the challenge at hand.

A big part of this challenge is that the flood of data is misunderstood. The term itself, Big Data, focuses brand marketers on the amount of data, an orientation reinforced by infographic hyperbole about the supernova of bits and bytes sweeping through the brand marketing galaxy. But more data matters only if it’s better.

Getting something better from Big Data goes beyond the data itself. In fact, it depends mostly on the ways in which data are analyzed. What the Big Data revolution has stirred up is less about amount and more about analytics, but this is not something that comes naturally to most brand marketers.

A recent survey of marketing professionals by the IBM Center for Applied Insights found that 40 percent are well behind the curve of the analytics required for Big Data. Another 37 percent are further along, but still “limited” and “struggling.” In other words, a little over three-quarters of brand marketers are not keeping pace with the analytics needed to ensure that Big Data produces better outcomes. As Ari Sheinkin, IBM’s VP for Client Insights, put it in an AdAge op-ed, brand marketers are “stuck in a time warp, channeling their inner Don Draper.”

Most worrisome is the finding from this survey that fewer than one in five of this three-quarter slice of brand marketers brings a “scientific approach” to research and analysis. Relying instead on gut and grit may explain why only 23 percent of all marketing professionals say they are “highly effective” at building value through new insights, only 25 percent at capturing new markets and only 32 percent at engaging individual customers. Big Data alone won’t improve any of this. Indeed, more data will make all of it worse if brand marketers put it to use unscientifically.

The first question brand marketers should ask about Big Data is not what to do with it, but what not to do with it. Knowing what not to do is also the best way to see what can be done.

Much of what’s being touted about Big Data nowadays is a fallacious trumpeting of amount as putting an end to the need for scientific rigor and precision. By giving marketers a seemingly authoritative excuse for continuing to be unscientific, brands are put at risk. Big Data requires smarter not cruder analytics.

The biggest misconception is that Big Data “makes the scientific method obsolete.” This was Chris Anderson’s inexpert headline in a 2008 Wired article in which he proclaimed, “Correlation supersedes causation, and science can advance even without coherent models, unified theories, or really any mechanistic explanation at all.” Anderson’s rash pronouncement has been echoed by Oxford professor Viktor Mayer-Schonberger and Economist editor Kenneth Cukier in their 2013 Big Data bestseller in which they spend an entire chapter cheering the supposed triumph of correlation over causation.

Much of what’s behind these jabs at the scientific method and causation is the misguided belief that science is needed only when data are incomplete. This misperception stems from the fact that the error range typically reported with research results reflects the error associated with sampling. With all the data in hand, sampling error (presumably) goes away.  Since that’s what most people think of when they think of research error, it’s no surprise that many come to the mistaken conclusion that Big Data will eliminate all error, thus obviating any need for the scientific method or causation.

But it is naïve, or at least overly hopeful, to suppose that whatever patterns or connections the naked eye can see in a universe of data are free from error. More data is no cure-all.

As discussed in a prior Branding Strategy Insider post about the enduring need for random sampling, humans have a hardwired, built-in propensity for seeing patterns. While this helps us, it also hurts us.  It’s not hard to trip up our eyes and minds, as even the simplest optical illusion reminds us. With experience, we learn that we have to be disciplined and careful as we navigate our lives. Yet even so, we are still inclined to see patterns or connections where none exist, a problem that is particularly perilous when we are working with large datasets to make important policy or business decisions.

This is the value of the scientific method. It is a systematic framework for evaluating data that, properly applied, substantially reduces the likelihood of seeing patterns or connections where none exist. There is no magic threshold of data volume above which the scientific method suddenly goes poof and disappears. Whether more data or less, a scientific approach is essential for marketing to continue advancing beyond the limits of success possible with gut and grit.

This is not to suggest that more data won’t make marketing better. It is just to caution that when processed unscientifically, more data can be worse than less data; indeed, much worse.

As Nate Silver of FiveThirtyEight fame, now at ESPN, noted in his 2012 bestseller about forecasting, The Signal and the Noise, dearth of data is not the reason why economists can’t predict their way out of a paper bag. The Federal government publishes 45,000 economic indicators every year; private firms, over four million! You can plumb this “stack of economic indicators as thick as a phone book” to your heart’s content, but all you’ll get are “spurious,” “coincidental” relationships, nothing “substantive.” Only three to four dozen of these variables really matter. They are well known already – more data isn’t needed to find them. And they are understood to matter because they are rooted in theory – wanton data mining won’t add or subtract from that.

But even these few dozen variables aren’t very good predictors of economic outcomes.  So some economists try to remedy that by uncritically piling up a large number of predictive variables, eschewing theory and causation for more data and correlations. It doesn’t help.  As Silver has put it, “[I]f you just look at the economy as a series of variables and equations without any structure, you are almost certain to…delude yourself…into thinking you are making good forecasts when you are not.” In summing up the story of one economic forecasting firm that made an especially erroneous prediction in 2011 using this approach, Silver noted that it failed because “[i]t had a random soup of variables that mistook correlation for causation.”

Even more pointedly, Silver adds, “[T]here isn’t any more truth in the world than there was before the Internet…Most of the data is just noise, as most of the universe is filled with empty space.” This bears repeating – more data doesn’t mean more truth; it just means more noise, and thus a greater need for the scientific method to keep us from seeing patterns or connections where none exist. Unscientifically piling on Big Data only degrades what we know by clouding our understanding with randomness, chance and coincidence.

The problem with economic forecasting is not a lack of data. It’s the poor quality of both data and theory, along with misaligned forecasting incentives that reward meager analytics. More doesn’t help; better is what’s needed. This should be the Big Data focus of brand marketers, too. It’s not about big; it’s about better.

What brand marketers should do with Big Data is bring it to bear in areas where more means better. Four such areas are noteworthy.

First, more data can help in areas in which little or no data are currently available. For example, Big Data has already had a big impact on pricing. In years past, data for pricing decisions was sparse or non-existent.  But dynamic, real-time digital data is enabling brand marketers to capture value from pricing inefficiencies previously hidden from view by a lack of data. More data matters here, but it matters because more means better not because more means more.

Second, more data can help in areas in which existing data are flawed because of things like weak or indirect measures or untimely, slow collection and reporting. For example, Google search trends might be better early indicators of many brand marketing metrics ranging from consumer confidence to unemployment to economic slowdowns. Big Data can also be used to create tracking scales and risk indices that are impractical with existing data or to augment and improve existing measures. Again, Big Data makes a difference because it is better not because it is more.

Third, more data can enrich established, well-understood models of marketing engagement. One simple yet important example is personalizing the shopping experience of consumers. Personalization is a known, proven marketing model (e.g., One-to-One, CRM, mass customization, etc.). Big Data isn’t needed to unearth correlates about the value of personalization. What Big Data can do, though, is improve the ability of brand marketers to execute personalization. The more that brand marketers know about what consumers prefer, the better they can personalize what consumers get.

Finally, for some businesses, a surfeit of data facilitates more robust experimentation.  Google gets lots of headlines about its fervent commitment to nonstop testing and continuous incremental improvement. But for other companies, too, Big Data opens up feedback loops and performance details that make trial-and-error easy, quick and affordable. As many experts have insisted, with experimentation so simple and accessible, A/B testing, not gut, grit or theorizing, should be the heart and soul of brand marketing.

But this is also where many observers get carried away. Running experiments and testing ideas on real consumers doesn’t mean an end to the scientific method and causation. The principles of good experimentation are the same as ever, and these principles constitute the scientific method. Figuring out if an A/B test result is a real improvement or a chance finding still requires sound scientific protocol and causal analysis. Big Data makes more experimentation possible; it doesn’t make experimentation less scientific.

Beyond these four areas, brand marketers should proceed with care. Big Data must be used for specific ends and particular purposes, not for fishing expeditions. The worst thing that brand marketers can do is poke and probe and play around just to see what turns up. As Silver noted, that’s the sort of mindless, indiscriminate data mining in which you will find that ice cream sales are correlated with forest fires because both are more frequent in the summer. But it would be a misguided marketer who tries to use that correlation to sell more ice cream. There are no new hypotheses or models about what drives ice cream sales. There are no new insights about engaging consumers. There are no new indicators of attitudes and behaviors. There is nothing here other than a coincidental correlation between ice cream sales and forest fires. Obviously, this is an extreme example, but it is illustrative of the very real danger lurking in the unscientific handling of Big Data.

Big Data is a product of the digital age. Everything big about Big Data is premised on the explosive growth in digital sensors, digital signals and digital trails. Digital is the biggest thing facing brand marketers, of which Big Data is but one part.

It is easy for brand marketers to get so wrapped up in all things digital that Big Data gets taken for granted. It looks to be part and parcel of a transformative revolution in which none of the old rules apply. But that’s not true of data. Whether big or small, data are data. The same rules and safeguards that apply to less data apply to more data, too.

For Big Data to add value it has to be better not just bigger. There is no value in it simply because it’s more.  Big for the sake of big is sure to mislead. More without better is less.  Big Data must improve brand marketing, and when it does that it’s not big, it’s better.

Don’t just observe. Participate. The Un-Conference: 360° of Brand Strategy for a Changing World
Featuring John Sculley October 17-18, 2013 in Miami Beach, Florida
A unique, competitive-learning workshop limited to 50 participants
As in Your marketplace — some will win, some will lose, All will learn

Sponsored ByThe Brand Positioning Workshop, the Brand Storytelling Workshop Series and Brand Strategy and Customer Co-Creation Workshops

Branding Strategy Insider is a service of The Blake Project: A strategic brand consultancy specializing in Brand Research, Brand Strategy, Brand Licensing and Brand Education

FREE Publications And Resources For Marketers

Read More
Big Data

Big Data: Beyond The Bias

By

Kate Crawford, a principal researcher at Microsoft Research and a visiting professor at the MIT Center for Civic Media, has written a provocative post on the HBR Blog titled, “The Hidden Biases in Big Data.” She quotes former Wired Editor-In-Chief, Chris Anderson, as saying, “with enough data, the numbers speak for themselves.” Crawford then asks, can numbers actually speak for themselves?

Crawford’s answer is a simple no. She states:

Data and data sets are not objective; they are creations of human design. We give numbers their voice, draw inferences from them and define their meaning through our interpretations. Hidden biases in both the collection and analysis stages present considerable risks, and are as important to the big-data equation as the numbers themselves.

I agree. Data – big or small – can no more speak for itself than a goldfish. Big data just makes a long standing problem… bigger. Data must be cleaned and ordered before it can be used, and what numbers mean depends on how we interpret them. I also agree that what we really need is not big data but, to use Crawford’s term, data with depth. This is what I was trying to get at in my post about big data needing a little help.

Chatting to my colleague Bill Pink, Senior Partner, Creative Analytics at Millward Brown North America, he suggests that making use of big data, or any data for that matter, comes back to first principles:

What question are we trying to answer? Do we understand the people, psychology, human relationships, the category or phenomena under study? The upside of the big data is we now have previously untapped assets to help us answer these questions – mobile collection of texts, social media, set top data on TV viewing… that’s the amazing thing. 

And those new data assets can be used to provide a better explanation than if we did not have those data sets to include in the story. But that assumes a framework, analytic approach and tools to evaluate and integrate the data and reach these conclusions. It’s not the presence of the data that matters, it’s the question to be answered and the ability of the new data to take us to further than we were before.

Read More